Operating regimes of covalent modification cycles at high enzyme concentrations.

نویسنده

  • Ronny Straube
چکیده

The Goldbeter-Koshland model has been a paradigm for ultrasensitivity in biological networks for more than 30 years. Despite its simplicity the validity of this model is restricted to conditions when the substrate is in excess over the converter enzymes - a condition that is easy to satisfy in vitro, but which is rarely satisfied in vivo. Here, we analyze the Goldbeter-Koshland model by means of the total quasi-steady state approximation which yields a comprehensive classification of the steady state operating regimes under conditions when the enzyme concentrations are comparable to or larger than that of the substrate. Where possible we derive simple expressions characterizing the input-output behavior of the system. Our analysis suggests that enhanced sensitivity occurs if the concentration of at least one of the converter enzymes is smaller (but not necessarily much smaller) than that of the substrate and if that enzyme is saturated. Conversely, if both enzymes are saturated and at least one of the enzyme concentrations exceeds that of the substrate the system exhibits concentration robustness with respect to changes in that enzyme concentration. Also, depending on the enzyme's saturation degrees and the ratio between their maximal reaction rates the total fraction of phosphorylated substrate may increase, decrease or change nonmonotonically as a function of the total substrate concentration. The latter finding may aid the interpretation of experiments involving genetic perturbations of enzyme and substrate abundances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operating Regimes of Signaling Cycles: Statics, Dynamics, and Noise Filtering

A ubiquitous building block of signaling pathways is a cycle of covalent modification (e.g., phosphorylation and dephosphorylation in MAPK cascades). Our paper explores the kind of information processing and filtering that can be accomplished by this simple biochemical circuit. Signaling cycles are particularly known for exhibiting a highly sigmoidal (ultrasensitive) input-output characteristic...

متن کامل

Reciprocal Regulation as a Source of Ultrasensitivity in Two-Component Systems with a Bifunctional Sensor Kinase

Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with...

متن کامل

Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades.

Covalent modification cycles are ubiquitous. Theoretical studies have suggested that they serve to increase sensitivity. However, this suggestion has not been corroborated experimentally in vivo. Here, we demonstrate that the assumptions of the theoretical studies, i.e., irreversibility and absence of product inhibition, were not trivial: when the conversion reactions are close to equilibrium o...

متن کامل

Influence of a Novel Magnetic Recoverable Support on Kinetic, Stability and Activity of Beta-amylase Enzyme

In this paper, covalent immobilization of beta amylase enzyme on the surface of modified magnetic nano particles (ZnFe2O4@SiO2-NH2) is reported. For doing so, at first, the magnetic nanoparticles of ZnFe2O4 were synthesized by chemical co-precipitation method and then tetraethyl orthosilicate (TEOS) and 3-aminopropyltriethoxy sil...

متن کامل

Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements.

Previous studies have suggested that positive feedback loops and ultrasensitivity are prerequisites for bistability in covalent modification cascades. However, it was recently shown that bistability and hysteresis can also arise solely from multisite phosphorylation. Here we analytically demonstrate that double phosphorylation of a protein (or other covalent modification) generates bistability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 431  شماره 

صفحات  -

تاریخ انتشار 2017